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Results of numerical simulation of the mixing of a turbulent jet with a cocurrent incompressible-fluid flow
(Schmidt number Sc C 1000) in a cylindrical channel of circular cross section (axisymmetric mixer) with the
use of the standard k–ε turbulence model and different models for the averaged value of the mixture fraction
and its variance have been given. For the problem of mixing of an inert passive impurity, two regimes of flow
— the regime with the formation of a recirculation zone and that without its formation — have been consid-
ered. The formulated statistical model has been verified with the use of experimental data and results of cal-
culation by large-eddy simulation.

Introduction. Jet flows belong to one of the most abundant types of shear flows met with in solving practical
problems that are associated with the technologies used when devices for cleaning water media, burners, chemical re-
actors, heat exchangers, etc. are developed. The combinations of geometric parameters and mass flow rates used and
the thermophysical properties of the transferred substances frequently make for turbulence in flows [1]. The problem
of turbulent mixing of jets is of great interest. For example, in designing injection systems for feeding of liquid fuels,
it is necessary to solve the problem of obtaining a uniform distribution of the transferred substances over the cross
section of a mixing chamber which usually represents a cylindrically shaped channel where a jet develops in the
cocurrent flow bounded by the walls. In this case we must study the behavior of wall flows, i.e., flows with mixing
near solid walls, and to elucidate the influence of the walls on turbulent transfer in the channel. A fundamental under-
standing of such physical processes follows from an analysis of both experimental data and results obtained from
mathematical models.

Models operating with differential equations for statistical moments of turbulence parameters with the use of
different schemes of their closing remain the most viable for numerical realization in studying turbulent flows [2]. Un-
like the methods of direct numerical simulation of turbulent flows [3] or simulation of large eddies [4], such an ap-
proach requires a smaller volume of computations and allows information on the averaged characteristics of jet flows
at any point of the cylindrical channel as functions of the initial parameters of mixing flows.

In the present work, we give results of numerical simulation of the interaction of the turbulent axisymmetric
jet with the cocurrent flow of an incompressible fluid (Schmidt number Sc C 1000) in an axisymmetric mixer which
represents a cylindrical channel with diameter D with a coaxially mounted internal tube with a diameter d. We have
considered the problem of turbulent mixing of an inert passive impurity for different regimes of flow in such a mixer
with verification of the standard k–ε turbulence model and different models of calculation of the averaged value of the
mixture fraction and its variance by comparing the results obtained to experimental data [5] and to the results of large-
eddy simulation [6].
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In large-eddy simulation, anisotropic large-scale eddies with a scale exceeding the size of a finite-difference cell
are faithfully reproduced by numerical integration of equations for realization of turbulent characteristics, whereas small-
scale turbulent eddies are simulated with the use of either simple gradient relations or specially developed dynamic sub-
grid models [4]. Separation into large and small scales is carried out with a spatial filter where subgrid stresses and terms
describing the influence of small scales on the transfer of the mixture components in the dynamic system must be para-
meterized with subgrid models. They have difficulties analogous to those existing when statistical models for the
Reynolds-averaged quantities are closed. In this work, we use results obtained by large-eddy simulation with two subgrid
models: the Smagorinskii model modified using the dynamic procedure of Germano and a mixed subgrid model con-
structed on similarity laws and with a stable procedure of calculation of the Smagorinskii constant [6].

Regimes of Turbulent Mixing in the Axisymmetric Jet Mixer. For the initial evaluation of the hydrody-
namics and mixing of the turbulent axisymmetric jet of an incompressible fluid, blown out of the tube with a diameter
d into the cylindrical channel with diameter D, the basic parameters are the ratio of the weight flow rates (ejection
coefficient) Q = QD

 ⁄ Qd, the geometric parameter a = D ⁄ d, and the ratio of the densities b = ρd
 ⁄ ρD [1], and the

Reynolds number Red composed from the parameters of the blown-out jet, the Prandtl number, and the Schmidt num-
ber. In the present work, the influence of the last two parameters is not investigated. At the same time, as follows
from an analysis [7], the influence of the change in the Red value on the development of mixing  is not so significant
compared to the change in the ejection coefficient Q and the geometric parameter a.

It is quite sufficient to know these two parameters to determine, on the basis of the laws of conservation of
mass and momentum, the ratio of the flow rates of the cocurrent flow UD and the jet Ud at the mixer inlet UD

 ⁄ Ud =
Qb ⁄ (a2 − 1) and the parameters of the flow in the state of complete mixing — the ratio of the weight flow rates
Q∞ ⁄ Qd = Q + 1, the average velocities U∞ ⁄ Ud = (1 + Qb) ⁄ a2, and the densities ρ∞ ⁄ ρd = (1 + Q) ⁄ (1 + Qb), and the
pressure difference between the initial cross section and the mixer’s cross section at which the state of the flow is ho-
mogeneous [1]:
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The values of Q∞, U∞, ρ∞, and ∆p∞ are prescribed by the parameters of the flow under the assumption of
complete mixing, i.e., on an infinite mixer length. However, the nonuniformity in the distributions of the hydro- and
thermodynamic parameters of the flow is realized in different cross sections of the mixer of finite length. Therefore,
using the ratios Q∞ ⁄ Qd, U∞ ⁄ Ud, ρ∞ ⁄ ρd, and ∆p∞ ⁄ (ρdUd

2) we can evaluate the completeness of mixing in the mixer.
It is well known [8] that, in the axisymmetric mixer, there can be two topologically different regimes of flow:

1) a recirculation zone is formed at the channel walls; 2) this zone is not formed. Its occurrence can be explained
using a simple model of trapping of a medium [8]. The jet flowing out of the internal tube injects part of the fluid
from the cocurrent flow, which is in proportion to the difference of the velocities in the jet and in the flow. If the
fluid volume injected by the jet per unit time is larger than the fluid flow rate in the cocurrent flow, the form of flow
changes, the cocurrent flow separates from the mixer walls, and a recirculation zone occurs. Simple evaluations on the
basis of this model lead to an inequality 1 + Q < D ⁄ d whose fulfillment means that flow in the mixer occurs with the
formation of a recirculation zone (first regime). The results of experimental investigations confirm the validity of this
rule (see, e.g., [5, 8–10]).

In [5], it has been shown that return flow at the walls of the cylindrical channel leads to a difference in the
degeneration of turbulent characteristics, whereas the formation of the recirculation zone substantially influences the
rate of mixing of the passive impurity transferred by the flow. For the ratios of the flow rates (Q = 1.3 and 5) and

the diameters (D ⁄ d = 5), considered in [5], a homogeneous mixture in the first regime is formed 4 calibers earlier

than it is formed in the second. For Q = 1.3, the recirculation zone begins with the distance x ⁄ D > 0.1; its center is

between the cross sections 2.1 < x ⁄ D < 2.6, and the boundary of its degeneration lies just behind the cross section

x ⁄ D = 3.1. The influence of return flow on mixing can be analyzed by calculating the radius-averaged mixture fraction
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  ∫ 

0

1 ⁄ 2

r2 f
_
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 ⁄ 



  ∫ 

0

1 ⁄ 2

r2dr



 (r is made dimensionless by means of D) [11]. It is precisely the rate of macromixing for

both regimes of mixing that can initially be evaluated by the change in the normalized value Y = (fav − f0) ⁄ (f∞ − f0)

along the mixer (Fig. 1); here, the value of f0 = fav in the initial cross section of the mixture is the same for both

regimes, and f∞ = 1 ⁄ (Q + 1) is the fav value in complete mixing. As is seen from the figure, mixing is carried out in

such a manner only at a small distance (x ⁄ D < 0.6). Downstream macromixing is more rapid for the first regime and

is close to its stage of completion beginning with x ⁄ D = 3.1 (Y approaches the asymptotic value Y = 1), whereas in

the second regime, such a state is observed only at x ⁄ D = 9.1.

The quantity σs = √3 ∫ 
0

1 ⁄ 2

r2 f
_
dr ⁄  ∫ 

0

1 ⁄ 2

f
_
dr  (r and σs are made dimensionless by means of D) characterizes the

transverse dimension of the jet and points to the probable position of the mixing layer formed at the boundary of in-
teraction of the jet and the cocurrent flow in the case of the regime of mixing for Q = 5. For the regime of mixing
for Q = 1.3, the integral parameter σs no longer carries information solely on the transverse dimension of the turbulent

jet, since the interaction of the jet and the cocurrent flow is affected by the return flow at the mixer walls. This fact
leads to a considerable content of the impurity over the entire cross section of the mixer. Such features of flow exert
an influence on the change in the turbulent characteristics and must be allowed for when efficient statistical models
are constructed.

Statistical Mixing Model on the Basis of the Reynolds Equations and Equations of the Mixture Fraction.
Numerical simulation for different regimes of mixing has been carried out with allowance for the geometric and hy-
drodynamic properties of the axisymmetric jet mixer. We calculated the following Reynolds-averaged quantities: the
longitudinal U and radial V components of the averaged velocity, the kinetic turbulence energy k and the rate of its
dissipation ε, and the averaged value of the mixture fraction f

_
 and its variance σ2.

In the axisymmetric formulation, for the functions sought, the differential conservation equations for the
steady-state flow of an incompressible fluid with a constant density ρ have the general form [12]

∂
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 (rρUF) + 
∂
∂r

 (rρVF) = 
∂
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rDeff 

∂F
∂x



 + ∂
∂r
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∂F
∂r



 + rS . (1)

Flow-Hydrodynamics Model. To calculate the longitudinal and radial components of the averaged velocity
we use the continuity equation and the equations for each velocity component, which have the general form (1):

∂ (rρU)
∂x

 + 
∂ (rρV)
∂r

 = 0 ,

Fig. 1. Integral parameters Y (dark points) and σs (light points) for different
mixing regimes: 1 and 2) Q = 1.3 and 3 and 4) 5.
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where the effective viscosity µeff represents the sum of the molecular dynamic viscosity µlam and the turbulent viscosity µt.
Turbulence is characterized by two parameters: the kinetic turbulence energy k and the rate of its dissipation

ε. Transfer equations for these functions are formulated with the use of the Boussinesq hypothesis and its analogs.
This hypothesis underlies most of the engineering calculations of turbulent flows [2, 12]. An alternative to the Boussi-
nesq hypothesis is separate simulation of all components of the turbulent-stress tensor, with the result that the corre-
sponding transfer equation is constructed and solved for each Reynolds stress. Compared to the turbulent-viscosity-
based models, such an approach possesses an important advantage in that it abandons the assumption of local isotropy,
but it contains numerous empirical constants. Found for one type of flow, they do not necessarily guarantee improve-
ment in the accuracy of calculation in another; a much larger volume of computations is required.

In the turbulent-viscosity-based models, unknown correlations are simulated by averaging the flow parameters
in closing the equations for turbulent characteristics. The Boussinesq hypothesis enables us to write the Reynolds-stress
tensor in terms of the strain-rate tensor of the averaged velocity with introduction of the notion of a turbulent viscosity
µt by analogy with the molecular viscosity µlam. In this case for calculation of the turbulent characteristics we have
obtained, from the Navier–Stokes equations, the standard k–ε model [2, 12]:
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In the standard k–ε model, to determine the turbulent viscosity µt one uses the Kolmogorov–Prandtl formula
µt = ρCµk

2 ⁄ ε which is true for the assumption of developed locally isotropic turbulence, and the model’s constants
Cµ, σk, σε, Cε1, Cε2, and Cε3 are prescribed from experiment [2, 12].

Following the recommendations of [12], standard values of the empirical constants Cµ, σk, σε, Cε1, and Cε2 are
used for the standard k–ε model in many engineering calculations of turbulent flows. They have been selected by com-
paring calculation results and experimental data for the wall jet and the mixing layer of an incompressible medium.
However, it is well known [13, 14] that the standard k–ε turbulence model with this set of constants yields an overstated
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result on the rate of spread and degeneration of axisymmetric free jets. Therefore, a modification of the equation for the
dissipation rate ε by adding the extra term Pε, which was constructed on the idea of stretching of eddies, was used to
improve the accuracy of such a model, and the constant Cε3 was selected and was equal to 0.79 [13, 14]. It is notewor-
thy that such a model does not satisfy the realizability property [15] to which the turbulence model must correspond.

A different approach is related to the change in the constants Cε1 and Cε2 in terms of the equation that are
responsible for the enhancement and attenuation of the kinetic-energy dissipation [13, 16–20]. It is well known [21]
that the rate of spread of a circular jet decreases with increase in the Cε1 ⁄ Cε2 ratio. Increase only in the constant
Cε1 also leads to a lag of the degeneration of the jet occupying a stretched and simultaneously contracted flow region
in this case. The modification of [13, 16] uses the fixed value Cε1 = 1.6. In [22], selection of Cµ and Cε2 is depend-
ent on the rate of degeneration of the velocity and on the radius of opening of the jet [17]:

Cµ= 0.09 − 0.04ξ ;   Cε2 = 1.92 − 0.0667ξ ;   ξ = 




rd

2 (Uax − UD)
 




∂Uax
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 − 
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0.2

 .

The assumption of the linear dependence of rd on x and the inverse dependence of Uax on the longitudinal coordinate
[1] makes it possible to evaluate the constants as Cµ = 0.06 and Cε2 = 1.87 [22].

Mixing Model. The parameter characterizing the rate of turbulent mixing was the mixture fraction f which
was determined as the ratio of the local concentration of a dissolved passive impurity C to its concentration C0 at the
exit of the jet in the initial cross section of the mixer. Then we had f = 1 at exit of the jet and f = 0 at entry of the
cocurrent flow.

An analysis was made from the change in the first two statistical moments of the mixture fraction: the aver-
age value f

_
 and the variance of pulsations σ2. The averaged value f

_
 is the characteristic of large-scale transfer of sub-

stances dissolved in the medium, i.e., the rate of attainment of macromixing. Mixing to the molecular scale
(small-scale mixing, i.e., micromixing) is determined by the degeneration of pulsations in the concentration distribution
of the transferred substances in the flow region and is related to the change in the variance of the mixture fraction
σ2 due to the scalar dissipation with a rate εs. The equations of the f

_
–σ2 mixing model [12] that are written with the

use of the gradient hypothesis for turbulent scalar flows are identical to the transfer equations (1):
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where Cσ1 = 2 and ρ(Dlam + Dt) = µlam
 ⁄ Sc + µt

 ⁄ Sct. The value of Sct = µt
 ⁄ (ρDt) is usually taken to be equal to 0.7.

For the equation of the variance σ2, we must prescribe the method of determining the scalar-dissipation rate
εs. One model used for εs is the algebraic model based on the assumption of the change in the ratio of the time scales
of the turbulent velocity fields τt = k ⁄ ε and the scalar τs = σ2 ⁄ εs (scalar-mixing time) R = τt ⁄ τs [12]. In this case we
have εs = σ2 ⁄ τs = Rσ2 ⁄ τt. The assumption of constancy of R (usually R = 2) enables us to write a widely used mix-
ing model. It holds true for the fully developed scalar spectrum, i.e., mixing is assumed to occur on all length and
true scales. Furthermore, dissipation must be in equilibrium with the production of pulsations of the mixture fraction
on large scales, whereas the production of velocity and scalar pulsations must occur similarly and be dependent on the
same physical mechanisms.

The model at R = 2 is used predominantly in investigations of gas flows with molecular Schmidt numbers Sc

of the order of unity. Modification of the algebraic expression for the characteristic time scale of scalar dissipation τs =
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 has been proposed for determination of the influence of the Sc value on the change in the

turbulent characteristics [23]. In this case the ratio of the characteristic time scale R = (2 + Sc−1) ⁄ (3 + Ret
−1 ln Sc), with

account for the known expression τK ⁄ τt = 1 ⁄ √Ret , is a variable and is dependent on both the Schmidt number Sc and

the turbulent Reynolds number Ret which is calculated from the standard velocity pulsation u′ = √2k ⁄ 3  and the length

scale of turbulence lt. When Sc → 1, the last model degenerates to the model for R = 1.

The model constructed with allowance for the features of the mixing of media with large Schmidt numbers
Sc is the cascade (multiscale) f

_
–σ2 model [23]. In this case the dissipation and the production of mixture-fraction pul-

sations are determined by their change in three stages characterized by the inertial-convective, viscoconvective, and vis-
codiffusion ranges of the energy scalar spectrum [23, 24]. The intrinsic component of the variance (σ1

2, σ2
2, σ3

3) with
its own transfer equations of the form (1) [23]
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for which Cσ1 = 2, Cσ2 = 2, Sct = 0.7, E = 0.058τK
−1 ⁄ 2, and G = (0.330 + 17,050 ⁄ Sc)E, is responsible for each stage.

The equation for the total dispersion σ2 = σ1
2 + σ2

2 + σ3
3
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yields that in the cascade model [23], pulsations are produced by large-scale transfer and dissipate in the viscodiffusion
range with a viscodiffusion-mixing rate determined by the frequency characteristic G = (0.330 + 17,050 ⁄ Sc)E; the pa-
rameter E = 0.058τK

−1 ⁄ 2 is responsible for micromixing in small dissipative eddies [23, 24].
Realization of the Statistical Model and Boundary Conditions. Because of the symmetry of the mixer

structure, we considered, in the calculation, a two-dimensional rectangular 0.6 × 0.025 m region in the longitudinal di-
rection from the outlet plane of the internal tube and in the radial direction from the mixer axis. The calculations were
carried out on a nonuniform spatial grid with the clustering of nodes at the outlet plane of the internal tube, at the
flow axis, and in the wall region. The number of cells was 60 in the radial direction and 880 in the longitudinal di-
rection. The transfer equations for the functions sought were solved with the use of the FLUENT commercial package
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with a discretization scheme of second order and a refinement of pressure by the Patankar–Spalding SIMPLE algo-
rithm [12]. The iterations ended upon attaining an accuracy of the order of 10−6 for all functions. The UDS module
with the software procedures written in the macroses language of the FLUENT package was used for realization of the
f
_
–σ2 cascade model.

We determined the initial profiles for all the functions sought in the initial cross section of the computational
domain (exit plane of the jet). It is well known that the longitudinal-velocity profile is described by the parabolic law

U = Umax(1 − (2r ⁄ d)2) for laminar flow in a tube with a diameter d, and the radial velocity is V = 0. At the same

time, the power law U = Umax 



1 − 2r

d





1 ⁄ n

 and V = 0 hold true for the developed turbulent flow in the tube. In [1],

the value of n is equal to 7. An alternative method of prescribing the initial profiles is their evaluation from the available
experimental distributions. In the present investigation, simulation was carried out when both a power-law profile and
a constant longitudinal velocity were prescribed at exit of the jet. The profiles of the longitudinal velocity U at the
outlet of the internal tube and the inlet of the mixer were evaluated from the available experimental data [5]. The profile
of the longitudinal velocity U, measured near the internal-tube outlet, was quite well approximated by the power law
for n = 10 with the velocity Umax equal to the velocity Ud. A longitudinal-velocity profile consistent with experimental

data [5] was established at entry of the cocurrent flow. The transverse velocity component was equal to zero.
The profiles of turbulent characteristics of the jet and the cocurrent flow were determined from the relations

for the kinetic energy k = 1.5Tu2U2 and the rate of its dissipation ε = Cµ
3k3 ⁄ 2 ⁄ lt. The turbulence intensity Tu =

u′ ⁄ U was evaluated as Tu = 0.16Reh
−1 ⁄ 8. The initial length scale of turbulence lt was prescribed by the relation lt =

0.07Dh. The Reynolds number Reh was calculated from the hydraulic parameter Dh determined in terms of the open
area of the flow and the wetted perimeter of the domain for which the boundary condition was specified. We had
Dh = d for the exit of the jet and Dh = D − d for the entry of the cocurrent flow. According to definition, the aver-
aged value of the mixture fraction f

_
 was equal to unity at exit of the jet and took the zero value at entry of the cocur-

rent flow; the values of the variance σ2 and its components σi
2 (i = 1, 2, and 3) were equal to zero.

The condition of equality to zero of the radial component of the averaged velocity V and the derivatives
∂(ρF) ⁄ ∂r, where F = U, k, ε, f

_
, or σ2 and σi

2, was set on the symmetry axis. At the outlet boundary of the compu-
tational domain, we had ∂(ρV) ⁄ ∂r = 0 for all functions. In this case the continuity equation degenerated to ∂(ρF) ⁄ ∂x
= 0, whence it followed that the radial velocity was V = 0 at the entire outlet boundary because of its equality to zero
on the symmetry axis.

The adhesion condition for the components of the velocity U and V and the equality to zero of the derivatives
∂(ρF) ⁄ ∂r, where F = f

_
, σ2, and σi

2, were set on the walls. The equations for the k–ε model hold true for developed
locally isotropic turbulence. Near the wall, there is a boundary layer in which this assumption is violated, i.e., the tur-
bulent Reynolds number is Ret << 1. Therefore, the method of wall functions with the logarithmic wall law was used
near the wall to prescribe the turbulent characteristics (kinetic turbulence energy k and the rate of its dissipation ε)
[12].

Below, we consider the turbulent transfer of a passive impurity (rhodamine) contained in the jet and its mix-
ing with the medium of the cocurrent flow for two regimes of mixing: with a recirculation zone (1) and without it (2)
(Table 1). Numerical simulation is carried out with allowance for the geometric and hydrodynamic properties of an ax-
isymmetric jet mixer which was used in the experimental investigation of [5] (ρ = 1000 kg ⁄ m3, d = 0.01 m, Ud = 1
m ⁄ sec, Schmidt number Sc = 100, and Reynolds number Red = ρUd

 ⁄ µlam = 10,000).
Change in the Averaged Velocity and Its Standard Pulsations. The behavior of Uax (Fig. 2a and b) dem-

onstrates that the degeneration of the averaged velocity for both mixing regimes is the same to the distance x ⁄ D < 1.1.
In the initial cross section (near the exit of the jet), the injected jet is close to developed turbulent flow in character.
The length of the potential core in which the jet is weakly dependent on viscosity and which is observed in jet flows

TABLE 1. Parameters of the Mixing Regimes

Regime No. Q a b ReD/Red UD/Ud U∞/Ud f∞

1 1.3 5 1 0.27 0.054 0.092 0.43

2 5 5 1 1.042 0.2083 0.24 0.17
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[1] is quite short. Just behind the cross section x ⁄ D = 1.1, the velocity Uax on the mixer axis degenerates much more
rapidly for Q = 1.3 than for Q = 5 and attains its asymptotic value U∞ by the cross section x ⁄ D = 6. The kinetic
turbulence energy grows from the initial cross section downstream and attains its maximum in the cross section x ⁄ D
= 2.1, after which it rapidly degenerates with a certain leading rate for Q = 1.3. This leads to the fact that the kinetic
energy behind the rear boundary of the recirculation zone (x ⁄ D > 3.1) is twice as low as that for Q = 5 and nearly
completely degenerates after the cross section x ⁄ D = 6. This fact demonstrates that the complete mixing takes shorter
time in the case of formation of a recirculation zone in the jet mixer.

In [25], a number of the sets of constants (Table 2) used in investigating free turbulent jets are used with the
aim to verify the standard k–ε turbulence model for a circular turbulent jet in its mixing with a cocurrent flow
bounded by the walls of a cylindrical channel. The numerical simulation carried out in [25] with different sets of
model constant shows that the modifications correspond to a variable degree to experimental data [5] for both the ve-
locity Uax and the kinetic turbulence energy k compared to the standard set (model 1, Table 2). The use of the extra
term Pε in the equation for dissipation (model 2, Table 2) is absolutely insufficient for agreement. At the same time,
increase in the Cε1 ⁄ Cε2 ratio (models 3–5, Table 2) points to the much slower rate of opening and degeneration of the

TABLE 2. Constants of the Standard k–ε Turbulence Model

Model No. Literature
source

Cµ σk σε Cε1 Cε2 Cε1/Cε2 Cε3

1 [11] 0.09 1 1.3 1.44 1.92 0.75 0

2 [15] 0.09 1 1.3 1.44 1.92 0.75 0.79

3 [21] 0.09 1 1.3 1.44 1.80 0.80 0

4 [14] 0.09 1 1.3 1.60 1.92 0.83 0

5 [21] 0.09 1 1.3 1.44 1.87 0.77 0

Fig. 2. Longitudinal component of the averaged velocity (a and b) and the ki-
netic turbulence energy (c and d) along the mixer axis for two mixing regimes
(a and c) Q = 5 and b and d) 1.3), obtained according to different computa-
tional approaches: the standard k–ε model — model 1 (Table 2) (1); model 5
(Table 2) with a power-law velocity profile at exit of the jet (2) and model 5
(Table 2) without this profile (3); large-eddy simulation with a subgrid mixed
model (4) [6] and with a subgrid Smagorinskii model with allowance for the
Germano procedure (5) [6]; 6) experimental data of [5].

699



circular jet than that recorded by models 1 and 2. The best agreement with experiment [5] for the velocity Uax is
demonstrated by model 4 for both mixing regimes; however, the level of kinetic energy from calculation is under-
stated. Models 3 and 5 yield the identical (close to that experimental) result on degeneration of the velocity Uax along
the mixer axis (Fig. 2a and b). It is noteworthy that model 5 is the best one from those considered from the viewpoint
of the accuracy of prediction of the kinetic energy k for both mixing regimes (Fig. 2c and d); for Q = 5, the agree-
ment of the change in this characteristic of turbulence with experimental data [5] is fairly complete (Fig. 2c).

The use of a constant value of the longitudinal velocity U instead of the profile in the form of a power law
as the boundary condition at exit of the jet for calculation gives rise to the region with a constant velocity to the dis-
tance x ⁄ D = 1.5 for both mixing regimes (Fig. 2a and b). This is in disagreement with the change, in the initial re-
gion, in the longitudinal velocity obtained both experimentally and by large-eddy simulation with the use of a subgrid
mixed model and a stable procedure of calculation of the Smagorinskii constant [6] and from the standard k–ε model
(model 5, Table 2) with the power-law velocity profile being prescribed. Furthermore, the assumption that the velocity
at exit of the jet is constant leads to a lag of the degeneration of the calculated kinetic turbulence energy compared to
that obtained experimentally (Fig. 2c and d).

Figures 3 and 4 demonstrate the change in the longitudinal component of the averaged velocity U and the
standard pulsations u′ = √2k ⁄ 3  in the mixer’s cross section at different distances from the cross section of blowing-out
of the turbulent jet in different mixing regimes.

When Q = 1.3, return flow exists in a thin layer near the mixer wall, which is reflected in the change of sign
of the averaged velocity in the cross sections x ⁄ D = 1.6 and 3.1 (Fig. 3b and c). The level of turbulent pulsations

Fig. 3. Longitudinal component of the averaged velocity (a–c) and its standard
pulsation (d–f) for Q = 1.3 in the mixer’s cross section at different distances
from the exit of the jet: a and d) x ⁄ D = 1.1, b and e) 1.6, and c and f) 3.1.
Notation 2, 4, 5, and 6 is the same as in Fig. 2.
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grows over the mixer’s cross section downstream (Fig. 3d–f), pointing to the development of a recirculation zone.
However, as has been shown in [5, 26], the maximum turbulent velocity pulsations are recorded immediately behind
the recirculation zone, not in it, in the cross section x ⁄ D = 5.1. In turn the formation of a uniform distribution of the
averaged velocity for x ⁄ D > 5.1 is responsible for the decrease in pulsations [5, 26].

An analysis made in [5, 26] has shown that the regime of mixing without a recirculation zone for Q = 5 is
characterized by the higher velocity of the cocurrent flow and the monotonic expansion of the velocity profile reflect-
ing the development of jet flow (Fig. 4). When x ⁄ D < 2.1 the profiles of turbulent pulsations are much narrower, and
their maximum values are lower than those in the mixing regime considered above. Despite the by no means uniform
distribution of the averaged velocity over the mixer’s cross section in the investigated range of distances x ⁄ D < 9.1, the
profiles of turbulent pulsations in the cross sections x ⁄ D = 7.1 and 9.1 are quite uniform. Their values are appreciably
lower than those existing in analogous cross sections in the mixing regime with a recirculation zone, where the aver-
aged-velocity distribution is more uniform.

This dynamics of interaction of the turbulent jet and the cocurrent flow in the axisymmetric mixer for both
mixing regimes is in fairly good agreement with the results of calculation by large-eddy simulation with the use of a
subgrid mixed model with a stable procedure of calculation of the Smagorinskii constant [6] and the standard k–ε
model (model 5, Table 2) with the power-law velocity profile being prescribed (Figs. 3 and 4).

Change in the Averaged Value of the Mixture Fraction and in Its Variance. Figure 5a and b compares
results of the change in the averaged value of the mixture fraction fax = f

_
(x, 0) along the mixer axis for both mixing

regimes (the results have been obtained using different turbulence models) and experiment [5].

Fig. 4. Longitudinal component of the averaged velocity (a–c) and its standard
pulsation (d–f) for Q = 5 in the mixer’s cross section at different distances
from the exit of the jet: a and d) x ⁄ D = 1.1, b and e) 3.1, c and f) 3.1. No-
tation 2, 4, 5, and 6 is the same as in Fig. 2.
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As is seen, near the exit of the turbulent jet, there is a region with a constant concentration of the impurity
up to x ⁄ D = 1 for both mixing regimes (Fig. 5a and b). However, the results obtained using different statistical tur-
bulence models [6] and large-eddy simulation with a subgrid Smagorinskii model with allowance for the dynamic pro-
cedure of Germano [6] overstate the length of this region by twofold. Next we have the process of intense mixing to
form a uniform concentration distribution, which is reflected in the fact that fax attains its asymptotic value f∞ (regime
of complete mixing) in calculations by all the models. For Q = 1.3 (Fig. 5b), such attainment for all the models oc-
curs with a certain leading rate compared to experimental data and approximately 4 calibers earlier than for Q = 5
(Fig. 5a).

Calculation of fax along the mixer axis with the use of the standard k–ε model (model 5, Table 2) and with
the velocity profile in the form of a power law at exit of the turbulent jet gives a result analogous to calculations by
the statistical model for Reynolds stresses and by large-eddy simulation with the use of a subgrid mixed model with
a stable procedure of calculation of the Smagorinskii constant [6] for both mixing regimes (Fig. 5a and b).

Figure 5c and d gives the change in the relative variance σ ⁄ fax of the mixture fraction. Numerical results ob-
tained with the use of the mixing model for a constant ratio R = 2 and the cascade model [23] are compared to ex-
perimental data [5] and calculation [6] by large-eddy simulation with two subgrid models: the mixed model and the
Smagorinskii model with a dynamic Germano procedure [6].

For the above mixing regimes, both models give a result overstated relative to experiment and large-eddy
simulation in the change in σ along the mixer axis (Fig. 5c and d). However, the general trend holds: first we have
an increase in the level of relative pulsations because of the dynamic mixing of the jet and the medium entrapped
from the cocurrent flow due to the large-scale convective transfer and turbulent diffusion (macromixing) and thereafter
the degeneration of pulsations due to the intense dissipative process. The maximum level of pulsations in the cascade
model [23] is nearly 1.5 times higher than the level obtained for the mixing model at R = 2 and nearly thrice as high

Fig. 5. Averaged mixture fraction f
_
 (1) standard k–ε model (model 5, Table 2);

2) k–ε model [6]; 3) k–ω model [6]; 4) model for Reynolds stresses [6]; 5)
large-eddy simulation with a subgrid mixed model and 6) with a subgrid
Smagorinskii model with allowance for the Germano procedure [6]; 7) experi-
mental data of [5] and the variance σ (1) large-eddy simulation with a subgrid
mixed model [6]; 2) with a subgrid Smagorinskii model with allowance for the
Germano dynamic procedure [6]; 3) cascade model [22]; 4) mixing model for
R = 2; 5) experimental data of [5]) along the mixer axis for Q = 5 (a and c)
and 1.3 (b and d).
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as the experimental level. An analogous result has been given in [24], where the results of the cascade model are com-
pared to experiment [27].

The obtained f
_
 distribution in the flow demonstrates the qualitative difference in the structure of impurity

transfer for both mixing regimes because of the existence of the recirculation zone with a position consistent with ex-
perimental data [5] near the mixer walls for Q = 1.3. Such a fact is reflected in the shape of the f

_
(x, r) profile in the

mixer’s cross section (Fig. 6a and b). The transfer, by return flow, of the passive impurity along the mixer walls in
the direction opposite to the jet motion increases its concentration in this region, which causes f

_
 to grow. The f

_
 profile

expands downstream more rapidly than the averaged-velocity profile (Fig. 3a–c). As a result the formation of a nearly
quasihomogeneous composition of the mixture over the mixer’s cross section is observed even at the distance
x ⁄ D ≥ 3.1 (Fig. 6c), which is much earlier than the formation of a uniform averaged-velocity distribution (x ⁄ D > 5.1)
(Fig. 3c). An analysis [5, 26] of the development of the profiles of the averaged mixture fraction and its variance
based on the results partially presented in Fig. 6 enables us to state that the recirculation zone begins behind the cross
section x ⁄ D = 0.1 and degenerates by the cross section x ⁄ X < 5.1 and its center is located within 2.1 < x ⁄ D < 2.6.

Mixing without a recirculation zone for Q = 5 is slower. As has been shown in [26], the quasiuniform impu-
rity distribution begins to be realized only when x ⁄ D = 9.1. The f

_
 profile (Fig. 7a–c) expands much more rapidly than

the averaged-velocity profile (Fig. 4a–c), which can be due only to the level of intermittency in the shear layer at the
jet boundary. The variance profiles of the mixture fraction (Fig. 7d–f) are also wider near their maxima compared to
the velocity-pulsation profiles and expand appreciably more rapidly than the latter (Fig. 4d–f). The values of the vari-

Fig. 6. Averaged mixture fraction f
_
 (a–c) and its variance σ (d–f) for Q = 1.3 in

the mixer’s cross section at different distances from the exit of the jet: a and d)
x ⁄ D = 1.1, b and e) 1.6, and c and f) 3.1 (experimental data of [5]: 7) α = 90o,
8) 0o, 9) 180o; calculation results, curves). Notation is the same as in Fig. 5.
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ance of the mixture fraction in the region of attainment of macromixing (x ⁄ D ≥ 5.1) are close to the level of velocity
pulsations, and in the mixer’s cross section x ⁄ D = 9.1, they are nearly thrice as large as the values obtained in the
mixing regime with a recirculation zone, as has been shown in [26].

Figures 6 and 7 compare the averaged value f
_
(x, r) to the results obtained in [6] using different computational

approaches. All the models, except large-eddy simulation with a subgrid Smagorinskii k–ε model with allowance for
the dynamic Germano procedure [6], yield identical results compared to experimental data [5]. The difference is in the
description of the return-flow region for which the use of the standard k–ε turbulence model (model 5, Table 2) and
large-eddy simulation with a subgrid mixed model [6] yields a result more consistent with experiment [5].

Change in the profile of the dispersion σ of the mixture fraction obtained from the two mixing models points
to the overstated result in the intensity of scalar pulsations compared to experimental data [5] (Figs. 6 and 7, d–f).
Nonetheless, both the large-eddy simulation and the statistical models suggest that the position of local maxima of the
profile at the boundary of interaction of the jet and the cocurrent flow for Q = 1.3 (Fig. 6d–f) and for Q = 5 (Fig.
7d–f) is identical to experiment [5].

Analogously to the result on degeneration of the variance of the mixture fraction along the mixer axis (Fig.
5c and d), the cascade mixing model predicts the level of this quantity less adequately than the algebraic mixing
model for R = 2. An analysis of the transfer equations for σ2 in both models enables us to say that the difference is
introduced primarily by the approximations of scalar dissipation used. In the algebraic model, the time scale of scalar
dissipation is determined by the energy of the developed inertial-convective part of the scalar spectrum, whereas in the

Fig. 7. Averaged mixture fraction f
_
 (a–c) and its variance σ (d–f) for Q = 5 in

the mixer’s cross section at different distances from the exit of the jet: a and d)
x ⁄ D = 1.1, b and e) 3.1, and c and f) 5.1. Notation is the same as in Fig. 6.
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cascade model, it is actually determined by the rate of viscodiffusion mixing determined by the frequency characteristic
G which is dependent on the frequency characteristic of micromixing E in small dissipative eddies [23].

Conclusions. The above numerical simulation of mixing in interaction of the turbulent jet and the cocurrent
flow of an incompressible fluid (Schmidt number Sc C 1000) in the cylindrical channel of a circular cross section (ax-
isymmetric mixer) with the use of different models of calculation of turbulent characteristics enables us to formulate a
few basic conclusions.

Two mixing regimes — with a recirculation zone near the channel walls and without it — have been consid-
ered for the problem of transfer of a passive impurity in the axisymmetric channel. Such a feature introduces a quali-
tative difference into the flow structure, which demonstrates that complete mixing takes a shorter period of time in
formation of the recirculation zone near the channel walls. This result has been confirmed by an analysis of the de-
generation of the calculated longitudinal component of the averaged velocity, kinetic turbulence energy, averaged mix-
ture fraction, and its variance both along the channel axis and over the mixer’s cross sections at different distances
from the entry of the turbulent jet compared to experiment [5].

The verification of the standard k–ε turbulence model carried out on the basis of experimental data [5] shows
that more accurate prediction of the radius of opening and the degeneration of the jet requires modification of the con-
stants in the model equation for kinetic-energy dissipation [25]. The use of different sets of constants known from in-
vestigations of free turbulent jets has shown [25] that modification of the constants Cµ = 0.06 and Cε2 = 1.87 in the
standard k–ε turbulence model is the best relative to experimental data [5] for the mixing regimes considered. The use
of a constant value of the longitudinal velocity instead of the profile in the form of a power law as the boundary con-
dition at exit of the jet points to the existence of a region with a constant velocity to a distance x ⁄ D = 1.5 for both
mixing regimes, which is inconsistent with the change in the longitudinal velocity obtained both experimentally and by
large-eddy simulation.

Calculation of the averaged mixture fraction with the use of the standard k–ε model with the values of the
constants Cµ = 0.06 and Cε2 = 1.87 and with the velocity profile in the form of a power law at exit of the turbulent
jet yields a result analogous to the calculations by the statistical model for Reynolds stresses and by large-eddy simu-
lation for both mixing regimes. However, the mixing models considered (algebraic model for R = 2 and the cascade
model [23]) yield a result overstated relative to experiment and large-eddy simulation in the change in the variance of
the mixture fraction. In the cascade model, the level of pulsations along the mixer axis is nearly 1.5 times higher than
the level obtained for the mixing model for R = 2 and nearly thrice as high as that in the experiment.

The disagreement revealed point to the need for a more detailed analysis of the capabilities of computational
models for predicting turbulent mixing on the basis of the available experimental data.

This work was carried out with support from the Belarusian Republic Foundation for Basic Research (T06MS-
042) and the German Scientific-Research Society (DFG).

NOTATION

a, geometric parameter of the mixer; b, density ratio; C, local concentration of the passive impurity; C0, local
concentration of the passive impurity at exit of the turbulent jet; Cσ1 and Cσ2, constants of the f

_
–σ2 model; Cµ, Cε1,

Cε2, and Cε3, constants of the k–ε model; D, mixer diameter; Dh, hydraulic diameter; Dlam, molecular diffusion coef-
ficient; Deff, effective diffusion coefficient; d, diameter of the mixer’s internal tube; E and G, parameters of the cas-
cade f

_
–σ2 model; F, sought function; f, mixture fraction; f

_
, averaged value of the mixture fraction; f0, radius-averaged

mixture fraction in the mixer’s initial cross section; fav, radius-averaged mixture fraction; fax, averaged value of the
mixture fraction on the mixer axis; f∞, value of the mixture fraction in complete mixing; k, kinetic turbulence energy;
lt, length-scale of turbulence; p, pressure; pd, exit pressure of the jet; Pε, extra term in the equation of kinetic-energy
dissipation; p∞, pressure of homogeneous state; ∆p∞, pressure difference; Q, ratio of the flow rates at exit of the tur-
bulent jet and the cocurrent flow; QD, flow rate of the cocurrent flow; Qd, exit flow rate of the jet; Q∞, flow rate in
complete mixing; R, ratio of the characteristic time scales; r, coordinate across the mixer; rd, radius of opening of the
jet; Red, Reynolds number calculated from the parameters of the turbulent jet; ReD, Reynolds number calculated from
the parameters of the cocurrent flow; Reh, Reynolds number calculated from the hydraulic diameter; Ret, turbulent
Reynolds number; S, term responsible for the sources of different nature; Sc, Schmidt number; Sct, turbulent Schmidt
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number; U, longitudinal component of the averaged velocity; Tu, turbulence intensity; Uax, longitudinal component of
the averaged velocity on the mixer axis; UD and Ud, velocities at entry of the cocurrent flow and at exit of the jet
respectively; Umax, cross-section-maximum value of the longitudinal velocity (usually on the tube axis); U∞, velocity
in complete mixing; u′, standard pulsation of the longitudinal velocity component; V, radial component of the averaged
velocity; v′, standard pulsation of the radial velocity component; x, coordinate along the mixer; Y, normalized value of
fav; α, angular position of the mixer’s internal tube; ε, rate of dissipation of the kinetic turbulence energy; εs, scalar-
dissipation rate; µeff, effective viscosity; µlam, molecular dynamic viscosity; µt, turbulent viscosity; ρ, density of the
mixture; ρ∞, density of the mixture in complete mixing; σ2, variance of the mixture fraction; σ1

2, σ2
2, and σ3

2, compo-
nents of the variance of the mixture fraction; σk

2 and σε, turbulent Prandtl numbers; σs, integral parameter responsible
for the radius of opening of the jet; τK = √(µlam

 ⁄ (ρε) , Kolmogorov time scale; τs, characteristic time scale of scalar
mixing; τt, characteristic time scale of turbulence. Subscripts: 0, parameter in the mixer’s initial cross section; ∞, pa-
rameter in complete mixing; av, radius-averaged; ax, axial; D, parameter of the cocurrent flow; d, parameter of the jet;
eff, effective; h, hydraulic; lam, laminar; max, maximum; s, parameter of the mixture fraction; t, turbulent.
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